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Equi-ripple design of quadratic-phase RF pulses
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Abstract

An improved strategy for the design of quadratic-phase RF pulses with high selectivity and broad bandwidths using the Shinnar–

Le Roux (SLR) transformation is proposed. Unlike previous implementations, the required quadratic-phase finite impulse response

(FIR) filters are generated using the complex Remez exchange algorithm, which ensures an equi-ripple deviation from the ideal

response function. It is argued analytically that quadratic-phase pulses are near-optimal in terms of minimising the B1-amplitude for

a given bandwidth and flip angle. Furthermore, several parameter relations are derived, providing practical design guidelines. The

effectiveness of the proposed design method is demonstrated by examples of excitation and saturation pulses applied in vitro and in

vivo.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Most magnetic resonance imaging (MRI) methods

rely on frequency selective radio-frequency (RF) pulses,

which become spatially selective with the application of

magnetic field gradients. The quality and usefulness of

such pulses is determined by several criteria, including

the excitation profile, the maximum RF field strength

B1max, the deposited energy and the length of the pulse.

The ideal slice profile is a rectangular function for high
selectivity. In other words, the excitation should be

uniform within a chosen region and negligible outside

this region. Furthermore, a broad excitation bandwidth

is desired to reduce problems like the chemical shift

displacement or the sensitivity to B0 inhomogeneities.

In general, trade-offs have to be made among the

various criteria mentioned above in order to obtain

practically useful pulses. For common linear-phase
pulses, which are essentially sinc-pulses, high selectivity

requires a long pulse duration with many side lobes. For

a broad excitation bandwidth, pulses of this type require

high maximum RF field strength B1max, which is ulti-
* Corresponding author. Fax: +41-1-632-1302.

E-mail address: pruessmann@biomed.ee.ethz.ch (K.P. Pruess-

mann).

1090-7807/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmr.2003.10.009
mately limited by the RF amplifier. For example, a

typical limit for the B1 amplitude is about 10 lT on a
whole-body MRI scanner. At this RF field strength,

linear-phase pulses achieve about 1 kHz for a 90� flip

angle and 500Hz for 180�. However, much larger

bandwidths are required for many applications, espe-

cially at higher B0 field strengths. As shown in [1–3],

overlaying RF pulses with a quadratic phase in the

frequency domain results in the RF energy of the main

lobe being distributed more evenly over the pulse.
Hence, for a given B1max restriction, it is possible to

achieve a broader bandwidth and improved selectivity

by using quadratic-phase pulses.

However, the quadratic phase of these pulses limits

their application as general pulses, since they cannot be

refocused through linear gradients. Therefore, these

pulses are most useful for purposes that do not require

refocusing, such as the saturation and inversion of
magnetisation. For these purposes, the phase distribu-

tion is irrelevant, while high selectivity, good agreement

with the target profile and broad bandwidth remain es-

sential. For instance, good outer volume suppression

enables scanning with a reduced field of view and

therewith reduced scan time in imaging [2]. Further-

more, the chemical shift displacement in PRESS can be

reduced by saturating the region of displacement [4].
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A straightforward way of obtaining pulses with an
approximately quadratic phase is to rescale adiabatic

full passage pulses with offset independent adiabaticity

[5]. However, pulses with improved characteristics, such

as higher selectivity or error functions with constant

error ripples, can be obtained by designing them from

scratch. De novo design of RF pulses amounts to in-

verting the Bloch equations. This is particularly conve-

nient in the small-tip-angle approximation [6], where the
RF wave form and the pulse response can be approxi-

mated by a Fourier pair. For the design of pulses with

large flip angles, several methods of non-linear optimi-

sation have been proposed, using for instance optimal

control theory [7,8] and simulated annealing [9].

An elegant and more analytical approach is the

Shinnar–Le Roux (SLR) transformation [10,11], which

reversibly transforms RF pulses into two complex finite
impulse response (FIR) filters. The frequency response

of these filters corresponds closely with the excitation

profile of the RF pulse. Hence, the problem of RF pulse

design reduces to that of designing low pass FIR filters.

In case of linear-phase filters, this is a standard proce-

dure for which many methods exist. The SLR transform

is frequently used to design linear-phase pulses, which

are purely amplitude-modulated. Nevertheless, the SLR
concept is equally applicable for the design of RF pulses

with frequency modulation, such as quadratic-phase

pulses. However, FIR filters with a quadratic phase are

more intricate to design.

FIR filters are represented in the z-transform domain

as finite-order polynomial functions of a complex vari-

able (z). Quadratic phase requires complex polynomial

coefficients, which are generally more difficult to deter-
mine than real-valued coefficients for linear-phase pulses

due to increased algebraic complexity and possible ill-

conditioning of the problem [12,13]. A simple solution is

to determine real and imaginary parts of the coefficients

independently as though they were real-valued coeffi-

cients. This simplifies the problem, but does not gener-

ally yield the optimal solution [12].

Two methods have been previously proposed for
determining the complex coefficients of approximately

quadratic-phase FIR filters. The first one commences by

designing a minimum-phase FIR filter with the desired

magnitude response, whose phase pattern is then mod-

ified by root inversion [14]. The maximum frequency

bandwidth achievable with this method is small due to

numerical constraints and imprecise phase approxima-

tions. The second method is to calculate the polynomial
coefficients of the desired FIR filter through a complex

least-squares algorithm [2]. This optimisation minimises

the deviation from the ideal response in terms of the 2-

norm, which typically results in error overshoots at the

band edges. A more favourable solution is the equi-

ripple solution, where all error ripples are minimised to

achieve equal magnitude. This is obtained by minimising
the 1-norm (Chebyshev norm) of the error function.
An approximately equi-ripple error can also be obtained

by introducing a proper weighting function in the

least-squares optimisation. The implementation of this

approach, as described in [2], performs a weighted least-

squares fit to a pre-tailored target profile. With this

method, the authors obtained an almost equi-ripple

solution with broad bandwidth and high selectivity.

Nevertheless, they report restrictions to the range of
feasible quadratic-phase patterns.

In this work, we propose to obtain the equi-ripple

solution directly, using the complex Remez exchange

algorithm [12,13]. This permits determining quadratic-

phase pulses with a wide range of quadraticity from zero

(linear-phase) up to a critical maximum value. In the

first part of the paper, the motivation for quadratic

phase is reviewed. A simple heuristic reasoning is fol-
lowed by a mathematical argument, which illustrates the

near-optimality of quadratic-phase pulses in terms of

minimising B1max. Then several parameter relations are

described, providing design guidelines and illustrating

trade-offs among the various pulse properties. In the

subsequent sections, the actual design algorithms are

described and validated by both simulations and MR

experiments.
2. Motivation for quadratic-phase pulses

The advantage of quadratic-phase pulses can be ap-

preciated by comparing them to linear-phase pulses.

Most of the magnetisation in the selected band is rotated

simultaneously with a linear-phase pulse. This requires a
short main lobe, as its width is inversely-proportional to

the bandwidth. The maximum B1-amplitude of such

pulses increases with the bandwidth, as the integral

underneath the main lobe remains approximately con-

stant for a given flip angle. Therefore, the B1max and

power limitations of the transmit coil and the RF am-

plifier restrict the bandwidth achievable with linear-

phase pulses.
The key idea for reducing RF peak power is to excite

the spins successively at their individual frequencies ra-

ther than all at once [14]. By sweeping through the de-

sired frequencies sequentially, the pulse energy does not

need to be confined to a single main lobe. Thus, the

maximum RF amplitude can be significantly reduced.

The most straightforward option, a linear frequency

sweep, corresponds to multiplying the pulse envelope
with a quadratic phase term. Interestingly, such a

modulation also results in an approximately quadratic

phase pattern in the spectral response of the pulse. Thus,

the quadratic-phase response forms a suitable design

goal for RF pulses with reduced peak power, enabling

higher bandwidths. However, simply combining a linear

frequency sweep with constant RF amplitude, forming a
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so-called chirp pulse, results in a poor excitation profile.
Thus, more sophistication is needed to combine a qua-

dratic phase response with a proper rectangular ampli-

tude profile.

The motivation for quadratic-phase pulses can also

be argued from a more mathematical perspective, em-

ploying the Fourier transformation (FT), which ap-

proximates the solution of the Bloch equation for pulses

with small flip angles [6]. This approximation holds
strictly only for pulses with small flip angles h with

sin h � h, but it holds sufficiently well to qualitatively

describe the behaviour of pulses with a flip angle of up

to about 90�.
The ideal excitation profile jF ðxÞj is rectangular

jF ðxÞj ¼ rectðxÞ; where

rectðxÞ ¼
0; for jxj > BW=2;

sin h; for jxj6BW=2;

� ð1Þ

where x denotes the frequency, BW the bandwidth and

h the flip angle. If F ðxÞ has a linear phase, the RF
wave form f ðtÞ ¼ F F ðxÞð Þ is a sinc-function with a

sharp peak and a large number of significant side

lobes. Here, FðÞ denotes the Fourier transform. In

contrast, for efficient RF energy transfer in a limited

time, the envelope f ðtÞ should ideally be rectangular as

well. That is, the pulse envelope should be approxi-

mately rectangular in both the time and the frequency

domain. These two seemingly conflicting requirements
can be fulfilled only with a quadratic phase, as shown

by Papoulis [15].

A rectangular function with an overlaid quadratic

phase can be written as

f ðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
�4pki

p rect
t
2k

� �
e�ðit2=4kÞ; ð2Þ

where k is a scaling constant and rect is defined as in Eq.

(1). Eq. (2) is expressed in the frequency domain as

F ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
�4pki

p �F rect
t
2k

� �� �
�F e�ðit2=4kÞ

� �
: ð3Þ

The convolution in Eq. (3) can be developed into an

asymptotic series, as shown in [15]. For a sufficiently

large k and a sufficiently smooth envelope, this series can

be approximated by

F ðxÞ � eikx
2

rectðxÞ: ð4Þ
In this expression, k specifies the amount of quadratic
phase applied in the frequency domain. Generally, the

Fourier transform of a smooth envelope function with a

quadratic phase yields the same envelope in the other

domain, again with a quadratic phase. In the desired

rectangular profile, the smoothness criterion is violated

at the two discontinuities. As a consequence, the ideally

rectangular envelope in the time domain will deteriorate

at its edges. Incidentally, by swapping t and x, the same
reasoning explains why chirp pulses, which have the
ideal rectangular profile in the time domain, have such

poor excitation profiles.

According to Parseval�s theorem

kf ðtÞk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

�1
jf ðtÞj2 dt

s
¼ kF ðxÞk2

2p
/

ffiffiffiffiffiffiffiffi
BW

p
sin h: ð5Þ

Hence, the 2-norm is fixed for a given bandwidth BW

and flip angle h. In turn, for a fixed norm and pulse

duration, the smallest peak amplitude is achieved by a
pulse with a constant envelope (i.e., jf ðtÞj ¼ const),

which is accomplished precisely with quadratic phase in

the limit of large k. In other words, practical quadratic-

phase pulses are almost optimal in terms of minimising

the peak RF amplitude for a given pulse duration,

bandwidth, and flip angle.
3. Parameter definitions and relations

Successful design of quadratic-phase pulses that

match the target specifications closely requires trade-offs

among the design parameters. The main parameters

include the bandwidth

BW ¼ xs þ xp

2
; ð6Þ

and the fractional transition width

FTW ¼ xs � xp

BW
; ð7Þ

which is a relative expression for the selectivity. xs and

xp are the stop and pass band frequencies. Further key

parameters are the flip angle h, the filter length n and the

amount of quadratic phase k. The parameter settings
lead to certain pulse properties, such as the maximum

RF amplitude B1max, the energy of the pulse and the

resulting error function, which is defined as the devia-

tion from the target profile. In the following, several

relationships among pulse parameters and properties are

established as design guidelines.

To clarify the subsequent description, it is important

to distinguish between normalised and physical quanti-
ties. In FIR filter design, the frequency x is usually

normalised to the range ½�p; p�. The inverse SLR

transformation can be used to convert such filters into

an RF pulse shape with normalised time, whose dura-

tion is equal to the filter length n. This pulse can then be

scaled to any physical duration, thus rescaling frequency

and time to physical units. Throughout this paper,

physical frequency and time will be distinguished from
their normalised counterparts by the tilde symbol. The

quantities in physical units are given by:

~xx ¼ x
~
; ð8Þ
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~TT ¼ nD~tt; ð9Þ

~kk ¼ kD~tt2; ð10Þ

~BB1 ¼
B1

cD~tt
; ð11Þ

where D~tt denotes the sample spacing, ~TT the total dura-

tion of the pulse and c the gyromagnetic ratio. With

these relationships it is straightforward to scale an RF

pulse to different pulse durations.

3.1. Time-bandwidth product

The physical bandwidth of the RF pulse is given by

gBWBW ¼ BW

D~tt
: ð12Þ

With Eq. (9) this leads to the time-bandwidth product of

the RF pulse

~TT gBWBW ¼ nBW; ð13Þ
which is invariant under time and frequency scaling and

thus is a key characteristic of an RF pulse. This product

is fundamentally limited by digitisation. For quadratic-

phase pulses, an estimate of this limitation can be de-

rived from Eqs. (2) and (4) for moderate flip angles.

Ideally, the cutoff values of the rectangular functions in

the two domains are related through x ¼ t=2k, leading
to

BW ¼ n
2k

: ð14Þ

As mentioned, when enforcing a good rectangular shape

in the frequency domain, the corresponding profile in

the time domain will degrade at its edges and extend

beyond the idealised pulse duration. In order to still

capture the entire pulse, Eq. (14) must allow for some

slack in the time domain. This results in

BW � n
2k

: ð15Þ

Combined with Eq. (13), this yields

~TTgBWBW � n2

2k
: ð16Þ

That is, for achieving a high time-bandwidth product

with a given k value, n must be sufficiently large. Note

that k needs to be large as well in order to justify the

series expansion underlying Eq. (4) and to reduce B1max,

as discussed in the following.
Fig. 1. Effect of different amounts of quadratic phase k on the mag-

nitude of the RF pulse (Remez pulse with n ¼ 512, h ¼ 90�, xp ¼ 0:1p,
and xs ¼ 0:11p). The pulse at k ¼ 0 corresponds to a regular linear-

phase pulse. For increasing k the RF energy is spread out further and

further away from the original central main lobe.
3.2. Amount of quadratic phase

The amount of quadratic phase k is an important

design parameter, which needs to be chosen carefully.

The desired effect of the quadratic phase is to distribute
the RF energy more evenly across the pulse duration,
thus reducing B1max as illustrated in Fig. 1. For small k-
values, B1max is not sufficiently reduced. On the other

hand, there is also an upper limit for k, beyond which

errors in the profile increase disproportionately. This

limit for k is difficult to assess analytically, yet can be

estimated as follows.

In the small-tip-angle approximation, the function

f ðtÞ in Eq. (2) is equal to the RF field strength B1ðtÞ.
For constant jB1j and sufficiently large k, the flip angle
h in the pass band can be derived from Eq. (2)

through

h ¼ jB1j
ffiffiffiffiffiffiffiffi
4pk

p
: ð17Þ

For a constant h, this leads to the following propor-

tionality:

k / 1

B2
1

: ð18Þ

Thus, k must be large in order to reduce B1 effectively.

The product k B2
1 stays approximately constant when

varying the amount of quadratic phase, as illustrated in

Fig. 2.

However, increasing value of k also leads to increased
error of the pulse profile, as shown in Fig. 3. The error is

defined here as the maximum deviation from the target

profile. To account for undesired overshoots in the

transition bands, values in the transition bands that

exceed the target pass band value were rated as errors as

well. The error for k ¼ 0 (i.e., linear-phase pulses) is

related to an empirically derived performance measure

given by ðnBWFTWÞ [10]. The increase of this error
when applying quadratic phase can be best understood

in connection with Eq. (15). When increasing k, the

envelope in the time domain widens, as shown in Fig. 1.

As the finite pulse length n remains the same, the be-



Fig. 4. Unfavourable parameter selection (i.e., too high ðkBW2FTWÞ
product) can lead to high overshoots inside the transition band. As this

band is not considered during the fitting procedure, one has to choose

a different parameter set. Here: kBW2FTW ¼ 14.

Fig. 3. The pulse design error as a function of the parameter setting

(varying k, BW, FTW). The error plotted here is the maximum error

ripple, including the ripple in the transition band exceeding the value

of the pass band. In series a, b, and c, the fractional transition width is

held constant (FTW ¼ 0:1) and the bandwidth is varied (a,

BW � n ¼ 80:4; b, BW � n ¼ 160:8; and c, BW � n ¼ 241:3). In the other

series 1, 2, and 3, the bandwidth is held constant (BW � n ¼ 241:3),

while the fractional transition width is varied (1, FTW ¼ 0:05; 2,

FTW ¼ 0:1; and 3, FTW ¼ 0:125). Each series contains three lines,

corresponding to three different filter lengths (n ¼ 256, n ¼ 512, and

n ¼ 1024). Beyond a critical value of k � BW2 � FTW � 3:6 (vertical

line), the pulse design error increases sharply due to the emergence of

an overshoot in the transition band.

 

Fig. 2. The square of the B1 amplitude of Fig. 1 times k is plotted

against k, showing that Eq. (18) holds well in a wide range of k values.

The dashed line denotes the maximum B1 value, the solid line is the

mean value over the bandwidth calculated through Eq. (14) and the

default value from Eq. (17) p=16 with h ¼ p=2 is plotted with a dash-

dotted line.
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ginning and the end of the idealised pulse become more

and more truncated, leading to gradually increasing er-

rors. Thus, k is ultimately limited by the pulse length, as

previously observed in Eq. (15).

Another limitation to the degree of quadraticity was

found empirically. As shown in Fig. 3, the maximum
error in the fitted FIR filter grows slowly as a function

of k for moderate k values. Yet, beyond some critical

degree of quadraticity, the error tends to rise sharply.

This effect is due to the onset of an overshoot in the
transition band, as depicted in Fig. 4. As shown in Fig. 3,

this overshoot tends to occur when the product

kBW2FTW reaches a certain threshold, suggesting that

k should generally fulfil

kK 3:6

BW2FTW
: ð19Þ

The critical value of 3.6 is a rough guideline and

subject to slight changes depending on the specific pa-

rameter configuration. In practice, a more precise

maximum value for k is readily found by a few design

iterations. The upper bound expressed in Eq. (19) tends

to be more limiting than that expressed in Eq. (15).
Generally, for robust quadratic-phase pulse design both

inequalities should be fulfilled.

3.3. Filter length n

The number of samples n of the RF pulse is not ul-

timately significant [10], as long as n is large enough for

the chosen time-bandwidth product and k value. Above
a certain limit, a higher n while retaining the same time-

bandwidth product and fractional transition width will

only lead to a finer discretisation in the time domain,

while leaving the error in the frequency response largely

unaffected. On the other hand, insufficient n leads to a

violation of Eq. (15) and thus an erroneous fit. Fur-

thermore, the rotations represented in the individual

segments of the pulse become larger as n decreases. This
leads to an increasing violation of the hard pulse ap-

proximation, which underlies the SLR transformation.

As a result, the actual frequency response of the RF

pulse will deviate from the frequency response of the

FIR filter. In these respects, choosing a large n is ad-

visable, although excessive filter lengths n should be



Fig. 5. The relationships between the different domains associated with

the Shinnar–Le Roux (SLR) transform, shown for a typical quadratic-

phase RF pulse. The SLR transform links the RF pulse (1) with an

equivalent pair of FIR filters, A and B. The coefficient (2) and fre-

quency (4) representations of these filters are connected by the z-

transform. The frequency response of the FIR filters is related to the

excitation profile of the RF pulse (3) by the Cayley–Klein rotational

parameters. The excitation profile can equally be obtained by directly

integrating the Bloch equations (1) 3). However, in the reverse di-

rection the direct pathway, i.e., Bloch inversion, is generally not

available. Instead, SLR pulse design operates via the stages 4 and 2,

exploiting the reversibility of the intermediate transforms.
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avoided as they increase computation times and may
lead to numerical instabilities.

3.4. Energy

In the context of in vivo application another main

design restriction is the energy deposited by the RF

pulse in the tissue. The energy deposited per unit time is

commonly referred to as specific absorption rate (SAR),
which is subject to rigid safety regulations. The pulse

energy is proportional to the square of the 2-norm of ~BB1

[2], which in turn is proportional to gBWBW and h2 in the

small-tip-angle regime (Eq. (5))

Q /
Z ~TT=2

� ~TT=2
j ~BB1ð~ttÞj2 d~tt / gBWBW h2: ð20Þ

Frequency modulation can be neglected here, as it is far

lower than the precession frequency.

For low flip angles, the pulse energy Q depends solely

on the flip angle and the bandwidth gBWBW as derived in

Eq. (20). Thus, pulses with the same bandwidth and flip
angle deposit the same energy [2]. In other words, qua-

dratic-phase pulses behave like regular linear-phase

pulses in this respect, at least in the small-tip-angle

regime.
4. Methods

The SLR transformation converts the problem of

inverting the Bloch equations into that of designing two

complex polynomials AðzÞ and BðzÞ, which represent

regular FIR filters. Hence, it is possible to use the

comprehensive methodology of FIR filter design for RF

pulse design. AðzÞ and BðzÞ are ðn� 1Þth order poly-

nomials that represent the frequency-dependent

Cayley–Klein parameters of the rotation effected by the
corresponding RF pulse. For instance, the transverse

magnetisation created by a pulse from initial z-mag-

netisation of M0 is given by [10]

Mxy ¼ 2AðzÞ�BðzÞM0; ð21Þ
where the asterisk denotes complex conjugation and

z ¼ eix is the argument of the polynomials. In the fol-

lowing, ‘‘AðzÞ’’ and ‘‘BðzÞ’’ will be used interchangeably

with ‘‘AðxÞ’’ and ‘‘BðxÞ’’ for notational convenience.

Since the Cayley–Klein polynomials represent rotations,

they satisfy the following constraint:

AðzÞA�ðzÞ þ BðzÞB�ðzÞ ¼ 1; ð22Þ
for all values of z, which leads to

jMxyðxÞj ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jBðxÞj2

q
� jBðxÞjM0: ð23Þ

Hence, if jBðxÞj describes a rectangular profile as a

function of x, the excited transverse magnetisation
jMxyðxÞj will also exhibit a rectangular envelope. For the

design of low pass pulses, it is thus possible to first de-

sign a suitable B polynomial and then generate a

matching A polynomial that satisfies Eq. (22). Typically,

and in the current work as well, the A polynomial is

created through the Hilbert transform, leading to a
minimum-phase frequency response of A, as described in

[10]. When the phase of A is negligible, the phase of Mxy

will be similar to that of the B polynomial. Therefore, an

RF pulse with a quadratic-phase frequency response can

be generated on the basis of a B FIR filter with a qua-

dratic phase and a corresponding minimum-phase A
polynomial. The relationship between the RF pulse and

the A and B polynomials is depicted in Fig. 5.
In the following, two methods are described for cre-

ating FIR filters with complex coefficients. The first

method is least-squares optimisation, which employs a

weighting function for obtaining an approximately equi-

ripple error function, as previously suggested in [2]. The

second one is the proposed method, which uses the

complex Remez exchange algorithm [12,13] to directly

achieve a truly equi-ripple error function without the
need for heuristic spectral weighting. This algorithm is a

generalisation of the Remez/Parks–McClellan algorithm

[16], which permits approximating arbitrary magnitude

and phase response functions.
4.1. Target filter response

The desired frequency response, to which BðxÞ will be
fitted, is expressed as
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DðxÞ ¼ RðxÞeiuðxÞ; ð24Þ

where RðxÞ and uðxÞ are real-valued functions, de-

scribing the desired magnitude and phase responses,
respectively. For a low pass quadratic-phase response,

they are expressed as:

RðxÞ ¼
0; for jxjPxs;

sin h
2

� �
; for jxj6xp;

�
uðxÞ ¼ kx2;

ð25Þ

where h is the desired flip angle and xp and xs are the
pass and stop band frequencies. The gaps between the

pass and the stop bands are referred to as the transition

bands. The sinðh=2Þ originates from the SLR transfor-

mation and is derived from Eq. (23) by setting jMxy j to
ðM0 sin hÞ for 06 h6 p. It should be noted, that x is the

symmetric and normalised frequency in the range

½�p; p�. In the literature, the range of x is frequently

defined as ½0; 2p� with a centre frequency of p. This only
refers to a shift of reference, and in that case uðxÞ would
include a linear phase term as well. Note also, that it is

easily possible to extend this target to an asymmetric

function, for instance to obtain one sharper side.

4.2. Error function

The FIR filter to be designed is a polynomial of the
form

BðxÞ ¼
Xn�1

j¼0

bje�ijx; ð26Þ

where bj denotes the complex jth polynomial coefficient.

The difference between this filter and the desired re-
sponse function DðxÞ is expressed by the error function

EðxÞ ¼ W ðxÞðDðxÞ � BðxÞÞ; ð27Þ
where W ðxÞ is a real and non-negative weighting func-

tion. In the transitions bands, W ðxÞ is generally set to

zero.

4.3. Least-squares fit

As described in [2], a least-squares fit of the target
filter response is obtained by minimising the 2-norm of

the error function

kEðxÞk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ p

�p
jEðxÞj2 dx

s
: ð28Þ

With uniform error weighting this approach leads to

overshoots at the band edges. However, the weighting

function W ðxÞ can be adjusted to place more emphasis

in these areas and thus reduce overshoots. A feasible

weighting function for an approximately equi-ripple

solution was found to be [2]
W ðxÞ ¼

1

dðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10

1

x� 1
2
ðxsþxpÞ

� �2þ 1

xþ 1
2
ðxsþxpÞ

� �2
 !vuut ;

ð29Þ

where dðxÞ ¼ d1 is the relative target ripple of the

polynomial in the pass band, dðxÞ ¼ d2 in the stop band

and dðxÞ ¼ 1 (i.e., W ðxÞ ¼ 0) in the transition band.

For numerical treatment, the normalised frequency x
must be discretised. An equi-distant discretisation of the

frequency is given by

xl ¼ Dx l
�

þ 1

2

�
� p; ð30Þ

where Dx ¼ ð2pÞ=m denotes the sampling frequency and

the index l counts from 0 to ðm� 1Þ. The number of

sampling points m needs to be much larger than the filter

length n for sufficient accuracy.

Using this discretisation, the minimisation problem
can be reformulated in terms of matrix notation. The

actual and desired filter responses B and D, and the error

function E are transformed into the vectors B, D, E by

sampling along xl. By assembling the polynomial co-

efficients bj from Eq. (26) in a similar fashion, the actual

filter response can be expressed as

B ¼ Ub; ð31Þ
where the entries of the m� n matrix U are given by

ul;j ¼ e�ijxl : ð32Þ
The weighting function from Eq. (29) can be incorpo-

rated as an m� m diagonal matrix W, with its diagonal
elements given by

wl;l ¼ W ðxlÞ: ð33Þ
Hence, Eq. (27) can be restated as

E ¼ WðD�UbÞ; ð34Þ
and the optimal coefficient vector b is characterised by a

minimum of the 2-norm of E. The minimum-norm so-

lution can be calculated with the Moore–Penrose [17]

pseudo-inverse (y)

b ¼ ðWUÞyWD: ð35Þ

4.4. Complex Remez for Chebyshev-norm

In the proposed method, the truly equi-ripple solu-

tion is obtained by finding filter coefficients that mini-

mise the Chebyshev (i.e., maximum) error norm

kEðxÞk1 ¼ max
x

fjEðxÞjg; ð36Þ

with EðxÞ defined as in Eq. (27). The major advantage of
Chebyshev optimisation is that it does not require a par-

ticular weighting function for approximating equi-ripple
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behaviour. It minimises the maximum error, which forces
the magnitudes of the error ripples to be the same every-

where. Therefore, the weighting function W ðxÞ is now

constant everywhere apart from the transition bands,

which are exempt from optimisation. Nevertheless, one

may also choose to apply different constant weights on

the pass and stop bands in order to individually alter the

magnitude of the error ripples in the different bands.

Chebyshev optimisation of FIR filters with complex
coefficients can be accomplished with the complex Re-

mez exchange algorithm. For a detailed description of

the algorithm, the reader is referred to [12,13]. Briefly, to

minimise the Chebyshev norm efficiently, the main

strategy is to sample EðxÞ only at a sparse, finite subset

S of frequencies and iteratively adapt these frequencies

such that they sample the extreme values of the error

ripples. This basic approach consists of two steps, which
are depicted on the right in Fig. 6. In a first step, the best

approximation in terms of kESðxÞk1 (Eq. (36)) on the

sparse subset is calculated. In a second step, this subset

is altered such that the maximum error norm kESðxÞk1
of this subset increases. The optimal solution is found

iteratively repeating both steps until the subsets remain

the same.

The complex Remez algorithm (Fig. 6, top left) per-
forms these steps with subsets of nþ 1 points, where n is

the filter length. In this case, the minimisation problem

on each subset reduces to a linear system of equations,

which can be solved very efficiently. The optimal solu-

tion is found when the error norm on the subset,

kESðxÞk1, converges toward the actual error norm on

the continuous set, kEðxÞk1. This is generally the case
Fig. 6. Schematic of the algorithm for finding the optimal FIR filter

BðxÞ. The solution is characterised by a minimum of the Chebyshev

norm of the error function EðxÞ, corresponding to equi-ripple error.

Two stages (left) iterate through a two-step process until the optimal

solution is found. The second stage is invoked only if the first stage

fails to converge.
for parameter sets that comply with the relations de-
scribed in Section 3. For the case of non-convergence of

the complex Remez algorithm, a more advanced method

was described in [13]. This method, a generalised mul-

tiple-exchange ascent algorithm, forms the optional

second stage of the optimisation procedure (Fig. 6,

bottom left). It performs the same steps as described

above, yet samples the error function more densely and

uses a more intricate method for subset iteration. Using
the result of the first stage as an initial estimate, the

second stage converges safely, yet at the expense of

drastically increased computation time. However, it was

found empirically that the second algorithm needs to be

invoked only in cases with unfavourable parameter re-

lations. In these cases, even the optimal solution must

typically be discarded due to high error levels. For the

present work, the complex Remez and multiple-ex-
change ascent algorithms were performed under MAT-

LAB (The MathWorks, Natick, MA, USA), using an

implementation available in the signal processing tool-

box.

4.5. Validation study

To validate the proposed methods, an exemplary RF
pulse was designed with a time-bandwidth product of

330 (in radians), a fractional transition width of 0.073, a

flip angle of h ¼ 90�, k ¼ 120, and n ¼ 512 samples. For

comparison, two pulses with the same specifications

were additionally designed using the least-squares ap-

proach with either the weighting function given by Eq.

(29) or constant weights.

The excitation profiles of these pulses were verified by
numerical integration of the Bloch equations employing

a fourth-order Runge–Kutta method [18]. Additionally,

the pulses were verified experimentally on a Philips 1.5 T

Intera whole-body MR scanner equipped with a trans-

mit/receive birdcage resonator (Philips Medical Systems,

Best, The Netherlands). Both excitation and saturation

capabilities were shown on a phantom containing one

litre of doped water solution (T1 ¼ 360ms; T2 ¼ 320ms).
Furthermore, the saturation of magnetisation was

demonstrated in vivo in an axial section through the

human brain. Written informed consent was obtained

from the healthy volunteer prior to imaging.

All experiments were based on regular spin echo

imaging sequences. In the excitation experiments, the

quadratic-phase RF pulse was used for 90� excitation,

with a selection gradient in the same direction as the
readout gradient. The 180� refocusing pulse was then

used to select the image plane (TE ¼ 40ms,

TR ¼ 800ms). In the saturation experiments, the qua-

dratic-phase pulse was used for exciting the magnetisa-

tion, again in a perpendicular slice, followed by spoiler

gradients and the full spin-echo sequence with normal

slice selection (TE ¼ 30ms, TR ¼ 800ms).



Fig. 8. Comparison of FIR filter design with least-squares (left),

weighted-least-squares (middle), and complex Remez (right), based on

the pulse specifications given in Fig. 7. The top row shows the error in

the FIR filter response jBðxÞ � DðxÞj. The structure of the error rip-

ples is illustrated in the magnified insets. The two major peaks in each

plot correspond to the transition bands and do not represent actual

errors. Only the complex Remez algorithm yields error ripples of

constant magnitude throughout the pass and stop bands. The middle

and bottom rows show the resulting error in the transverse and lon-

gitudinal magnetisation, respectively. For the magnetisation the error

levels differ between the pass and stop bands, reflecting the non-linear

relationship between BðxÞ and the components of the magnetisation

(Eq. (23)).
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5. Results

The amplitude and frequency modulation of the ex-

emplary pulse (see Section 4.5) is shown in Fig. 7. For a

duration of ~TT ¼ 5ms it has a maximum RF field

strength of ~BB1max ¼ 20lT. For comparison, the maxi-

mum RF field strength of a linear-phase pulse with the

same specifications is more than threefold at
~BB1max ¼ 68lT. The complex Remez design is compared
to the alternative design methods in Fig. 8. The upper

row shows the magnitude of the deviation between the

desired and the achieved profiles designed with the

complex Remez, weighted least-squares and plain least-

squares algorithms. These results illustrate that direct

Chebyshev optimisation yields an exact equi-ripple error

function, while some variation in the error level is ob-

tained with either weighted or plain least-squares.
From the A and B polynomials, the transverse mag-

netisation was calculated through Mxy ¼ 2A�BM0 and

the longitudinal magnetisation through Mz ¼ ðAA�

�BB�ÞM0 [10], setting M0 to one. In the middle and

lower row of Fig. 8, the deviation of Mxy and Mz from

their ideal profiles are plotted for the complex Remez,

weighted least-squares and plain least-squares methods.

The error level in Mxy and Mz is different between pass
and stop bands, reflecting the non-linear relationship

between BðxÞ and the components of the magnetisation.

This effect can be readily compensated for by appro-

priate weights applied to the pass and stop bands [10], as

shown in Fig. 9.

In case of the complex Remez, the transverse mag-

netisation has a truly equi-ripple error function in the

stop band. However, in the pass band, the error shows
some modulation, falling below the equi-ripple level in
Fig. 9. Error in the transverse (jjMxy j � jM ideal
xy jj; left) and longitudinal

(jMz �M ideal
z j; right) magnetisations, obtained with a quadratic-phase

complex Remez pulse. The pulse specifications were the same as for

Figs. 7 and 8. However, different error weighting was applied in the

pass and stop bands to match the ripple magnitude in all three bands.

For equi-ripple transverse magnetisation (left), the weight on the stop

bands was exaggerated 140-fold. For equi-ripple longitudinal mag-

netisation (right), the weight on the pass band was exaggerated 300-

fold.

Fig. 7. Quadratic-phase pulse designed with the complex Remez ex-

change algorithm. The design parameters were: n ¼ 512, h ¼ 90�,
xp ¼ 0:095p, xs ¼ 0:11p, and k ¼ 120. This pulse was used for the

validation study (Figs. 11 and 12).
small intervals. This is due to the fact that Mz and jMxy j
depend only on the modulus of BðxÞ (see Eq. (23)). As a
consequence, only errors that are in phase with BðxÞ do
actually propagate into Mz and jMxy j. Out-of-phase er-

rors get masked, causing said incisions in the error plots.

The same also applies to the least-squares methods,

which additionally show variation in the error envelope.

In case of weighted least-squares these variations have



Fig. 12. Highly selective saturation by a quadratic-phase pulse exem-

plified in vivo on a healthy volunteer. A magnitude profile along the

horizontal line on the left is plotted on the right.
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been found to significantly depend on the chosen pa-
rameter settings, making it difficult to choose an optimal

weighting function a priori. The plain least-squares fit-

ting procedure with constant weighting is generally un-

favourable as errors increase significantly near the

transition band.

The effect of scaling ~BB1 to different flip angles is de-

picted in Fig. 10 for both transverse and longitudinal

magnetisation. By rescaling the applied RF field, the
bandwidth remains unchanged, but the profile deterio-

rates. Hence, for each target flip angle a specific RF

pulse should be designed rather than rescaling an ex-

isting pulse.

The results of the experimental validation study are

shown in Figs. 11 and 12. Fig. 11 shows the in vitro ex-

periments on the phantom, for both excitation and sat-

uration. Note the quadratic phase of the magnetisation,
which is only slightly distorted by the minimum-phase

AðzÞ polynomial. When used for selective saturation, the

designed pulse leaves only little magnetisation remain-

ing. Fig. 12 demonstrates the selective saturation in vivo

in the brain of a healthy human.

The complex Remez algorithm is relatively fast for

properly chosen parameters. For instance, designing the

RF pulse shown in Fig. 7 required 10 s on a current CPU
(Intel Pentium 4, 2.53GHz), running MATLAB 6.5 R13
Fig. 10. Pulse profiles of quadratic-phase pulses generally deteriorate

as ~BB1 is simply scaled to different flip angles. 0% denotes the original ~BB1

for a flip angle of 90�. Scaling the RF field by the indicated percentage

alters the pulse profile as shown. For high profile quality, quadratic-

phase pulses must be designed specifically for the target flip angle.

Fig. 11. Excitation (Mxy , left) and saturation (Mz, right) profiles ob-

tained with a quadratic-phase Remez pulse, as simulated with a

Runge–Kutta method (dashed) and measured experimentally using a

water phantom (solid). In the saturation profile (right) a region outside

of the phantom is included, reflecting the noise level present in the data

set.
(without JAVA) under a Linux operating system. The

algorithm converged in the first stage after 18 iterations.

While conceptually simpler than the complex Remez

approach, the least-squares algorithm has not proven to

be significantly faster than the latter. The main reason
for this is the fine discretisation required for sufficient

accuracy.

High time-bandwidth products rely on large filter

lengths n and are thus practically limited by computing

power. A time-bandwidth product in the range of 1000

(in radians) and above has been found to be readily

feasible with current equipment. However, the applica-

tion of such pulses in vivo may be restricted due to ex-
cessive power deposition.
6. Discussion and conclusion

In this work, we propose the use of the complex

Remez algorithm for determining the complex filter

coefficients in SLR design of quadratic-phase RF pulses.
Although it is possible to obtain qualitatively similar

results with the weighted least-squares approach, the key

advantage of the Remez method is that it is straight-

forward to apply. Since it directly minimises the

Chebyshev error norm, it obviates the need for a heu-

ristic weighting function and directly achieves solutions

with truly equi-ripple error function. While this work

has focused on quadratic-phase low pass pulses, the
general design method is applicable to pulses with ar-

bitrary magnitude and phase response functions. Nev-

ertheless, with any desired response function, it has been

found that solutions with acceptable errors generally

require proper choices of the design parameters.

This work also illustrates the specific benefits of

quadratic phase modulation in a semi-analytic fashion

(Section 2) and suggests parameter relations that may
serve as guidelines for the design of these pulses (Section

3). In particular, a critical maximum value for the

amount of quadratic phase k was obtained empirically.

This limit and several further rules need to be observed

in order to achieve markedly reduced B1max without

significant sacrifice in profile quality. It has been ob-
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served that for parameters chosen within the suggested
limits, the resulting error level will be similar to the error

of the corresponding linear-phase pulse.

The profile quality of the quadratic-phase Remez

pulses has been demonstrated by simulations and ex-

periments. In vivo application has confirmed the use-

fulness of such pulses for a highly selective suppression

of magnetisation and in vitro experiments have illus-

trated their applicability for both excitation and satu-
ration. Nevertheless, in Fig. 11 some residual signal is

still observed in the saturated band. The main reasons

for the residual signal are noise and T1 relaxation. The

latter effect could be addressed by adjusting the flip

angle for a given T1 value. Some further deviation from

perfect suppression may arise from slight mismatches

between the analytical pulse description and the actual

execution of the amplitude and frequency modulations
by the MR system.

Numerous applications may benefit from the qua-

dratic-phase pulses, which exhibit large bandwidth and

high selectivity. Reduced field-of-view imaging and non-

echo volume selection in spectroscopy are two applica-

tions already mentioned. Another prime application is

the inversion of magnetisation. Currently, this task is

often performed with adiabatic pulses. However, two
factors favour the use of specifically designed quadratic

phase pulses: for given time and B1max restrictions better

profiles can be achieved and the pulse energy will gen-

erally be lower than for adiabatic pulses. Such pulses

will find use in many inversion-prepared sequences, in

particular arterial spin labelling, where high selectivity is

crucial.

While less intuitive, quadratic-phase RF pulses may
indeed also be used for selective excitation, e.g., in 3D

imaging [19,20]. Here, the additional phase encoding

and Fourier reconstruction along the selection direction

can make the quadratic phase variation negligible at the

voxel scale. For common 2D imaging, quadratic phase

modulation across a selected slice is usually a problem

because it cannot be unwound with linear external gra-

dients. Alternatively, phase compensation can be done
by consecutive pulses with quadratic phase, where each

pulse cancels the phase of the previous one [21]. Another

way is to combine multiple pulse segments into a com-

posite pulse [22], as originally done to create an adia-

batic spin-echo pulse [23]. The downsides of these

approaches are higher power deposition and longer

pulse duration.

Finally, non-linear through-plane modulation may as
well be exploited as a beneficial effect. Examples for

such applications are spatial encoding by quadratic

phase [24] and various methods for compensating B0

inhomogeneity by quadratic- and tailored-phase RF

pulses [25–27]. Requiring RF pulses with specific target

phase responses, these methods will benefit from the

flexibility and accuracy of complex Remez design.
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